
Information Processing Letters 110 (2010) 655–658
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

The longest almost-increasing subsequence

Amr Elmasry 1

Max-Planck Institut für Informatik, Saarbrücken, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 February 2010
Received in revised form 24 May 2010
Accepted 25 May 2010
Available online 1 June 2010
Communicated by M. Yamashita

Keywords:
Algorithms
Algorithm design and analysis
Data structures

Given a sequence of n elements, we introduce the notion of an almost-increasing subse-
quence as the longest subsequence that can be converted to an increasing subsequence by
possibly adding a value, that is at most a fixed constant, to each of the elements. We show
how to optimally construct such subsequence in O (n log k) time, where k is the length of
the output subsequence.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The longest increasing subsequence (LIS) is a subse-
quence of maximum length where every element is greater
than the previous element. The longest increasing sub-
sequence problem refers to either producing the subse-
quence or just finding its length. The problem was first
tackled by Robinson [16] seventy years ago. The clas-
sical dynamic-programming algorithm for the problem,
which appears in many algorithmic textbooks [9], is due
to Schensted [17]. This algorithm runs in O (n log k), where
n is the length of the input sequence, and k is the length of
the longest increasing subsequence. Knuth [14] gave gener-
alizations to the problem with relations to Young tableaux.
Fredman [12] showed that O (n log n) comparisons are both
necessary and sufficient, to find the length or produce
the subsequence, in the comparison-tree model. The same
lower bound was also proven for the algebraic decision-
tree model [15]. If the input sequence is a permutation of
the integers 1 to n, algorithms were introduced to con-
struct the longest increasing subsequence in O (n log logn)

time [8,13].
The problem is important in practice. Several other

problems involve a LIS construction (see, for example, [5]).

E-mail address: elmasry@mpi-inf.mpg.de.

1 Supported by an Alexander von Humboldt Fellowship.

0020-0190/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.05.022
It has lately gained even more practical importance as it is
used in the MUMmer system [10] for aligning genomes.

A related problem is the longest common subsequence
(LCS) problem, which considers two sequences and locates
a series of entries that appear in the same order in both
sequences. Note that we can apply the LCS algorithms to a
sequence and its sorted outcome to get a longest increas-
ing subsequence.

Several variants of the LIS problem have been intro-
duced. The longest increasing subsequence of a circular list
(LICS) assumes the input sequence to be circular. A ran-
domized algorithm for the LICS that runs in expected
O (n3/2 log n) time is given in [3]. The best worst-case
bound known is O (n2), and can be achieved using tech-
niques from [4]. Another variant is to find the longest
increasing subsequences that lie in all the sliding win-
dows with a specified width. An algorithm that runs in
time proportional to the size of the output subsequences
plus an additive bound for constructing one LIS is given
in [4]. A generalization of the LIS problem is discussed
in [2], where a fixed set of permutations is given and the
task is to compute, for a given input sequence, the longest
subsequence that is order isomorphic to one of the given
permutations. The LIS problem applies when such permu-
tations are the identity permutations.

The combinatorics of the problem are of no less impor-

tance. Starting with the work of Erdös and Szekeres, the



656 A. Elmasry / Information Processing Letters 110 (2010) 655–658
length of a LIS in a random permutation was investigated.
The complete limiting distribution of the length of the LIS
of a permutation of length n chosen uniformly at random
is given in [6]. The expected length of a LIS is shown to be
close to 2

√
n.

Suppose one is considering the process of monitoring
the performance of an activity. We say that the activity
is well performing once it is well performing in compari-
son with a large number of accredited historical snapshots
where it was as well performing when deploying the same
criteria. Picking the largest number of points when the ac-
tivity is strictly performing better among such previously
selected points is too restricted and unfair. The notion
needs to be relaxed to reflect a good progress without nec-
essarily being the best selected so far. On another front,
there are applications where the data items have a small
amount of noise. In accordance, a relaxed version of the
LIS problem is needed.

In this paper, we introduce a variant of the LIS problem
that we call the longest almost-increasing subsequence
(LaIS) problem. We allow a drop of at most a constant
value from the maximum element that appeared so far.
Given a sequence 〈x1, x2, . . . , xn〉 and a constant c > 0, our
goal is to construct a longest subsequence 〈y1, y2, . . . , yk〉
such that ∀i yi > maxi−1

j=1 y j − c. We give an asymptotically
optimal algorithm that runs in O (n log k) time. The main
idea is to apply the dynamic programming paradigm to a
search-utilizing pointer-based data structure and not to an
array.

2. Recursive formulation

Let LaIS(h, i), h � i, denote a longest almost-increasing
subsequence among the elements of 〈x1, . . . , xi〉, such that
a largest element is xh and h is minimal. We show that
these two parameters fully characterize any LaIS, and re-
cursively express LaIS in terms of solutions to smaller
problems.

The key observation is that any LaIS(h, i), h < i, can be
split into two independent (except for the value of h) sub-
sequences, following the relation:

LaIS(h, i) = LaIS(h,h) · T (h, i),

where “·” is the concatenation operation, and T (h, i)
is the subsequence including every element x j among
〈xh+1, . . . , xi〉 satisfying xh − c < x j � xh .

The second observation is that LaIS(h,h) can be ex-
pressed as:

LaIS(h,h) = LaIS
(
i′,h − 1

) · 〈xh〉,
where length(LaIS(i′,h − 1)) has the maximum value
among i′ < h satisfying xi′ < xh . Note that i′ is not nec-
essarily unique.

3. The basic algorithm

The algorithm proceeds in n iterations. After the i-th
iteration, the algorithm maintains for each element x j ,
among the first i elements, a longest almost-increasing
subsequence whose largest element is x j and j is mini-
mal. For each such subsequence, it is enough to keep track
of its length l j and the minimal index p j of a largest el-
ement among the elements preceding x j . During the i-th
iteration, two tasks are performed: The first task is to find
a longest almost-increasing subsequence whose largest el-
ement is xi . This subsequence is constructed by appending
xi to the longest subsequence found so far whose largest
element is smaller than xi . More formally, we look for an
index i′ < i such that li′ � l j among all indexes j < i having
x j < xi . The length li is then set to li′ + 1, and the index pi
is set to i′ . The second task is to append xi to every sub-
sequence found so far whose largest element is larger or
equal to xi and smaller than xi + c. More formally, for all
j < i, set l j to l j + 1 if xi � x j < xi + c. After the n-th it-
eration, the length of the LaIS is the maximum length lm
among the li ’s stored by the algorithm. To construct a LaIS,
we make use of the pi ’s to produce the subsequence in
reverse order. Using the element xm corresponding to the
maximum length lm , scan every element xi , from i = n to
m + 1, and output the elements satisfying xm − c < xi � xm

followed by xm . Let xt be the last element of the subse-
quence output in the reverse order, scan every element xi
from i = t − 1 to pt + 1, and output the elements sat-
isfying xpt − c < xi � xpt followed by xpt . The previous
step is repeated until we get a value of pt that indicates
the first element of the subsequence (when, for example,
pt = t).

A straightforward implementation of the previous algo-
rithm would use two linked lists (or two arrays) each of
size n; one for the li ’s and another for the pi ’s. This imple-
mentation runs in O (n2) time.

Example

Assume c = 2, and consider the following sequence
indexed from 1 to 12: 〈7,15,2,14,14,6,8,11,17,15,14,

13〉. We show in Table 1 the two arrays: one holding the
lengths li ’s (first row), and another holding the indexes pi ’s
(second row), after each of the 12 iterations performed by
the algorithm.

It follows that the LaIS is of length 6. There are
five such subsequences: 〈7,15,14,14,15,14〉, 〈7,6,8,11,

15,14〉, 〈2,6,8,11,15,14〉, 〈7,6,8,11,14,13〉 and 〈2,6,8,

11,14,13〉. Typically, the algorithm stores one pi and re-
ports one LaIS.

4. The improved algorithm

Instead of storing one li corresponding to each xi , we
store one element for every length value. Namely, after the
i-th iteration, we store zl ← xh corresponding to length l,
where length(LaIS(h, i)) = l and xh � xh′ for all h′ sat-
isfying length(LaIS(h′, i)) = l′ � l. It follows that z j � z j′
for j < j′ . To show that these elements are enough to
construct a LaIS, consider two elements xh > xh′ where
length(LaIS(h′, i)) � length(LaIS(h, i)). Given any almost-
increasing subsequence having LaIS(h, i) as a prefix subse-
quence, we can replace LaIS(h, i) with LaIS(h′, i) and get
another almost-increasing subsequence with at least the
same length.



A. Elmasry / Information Processing Letters 110 (2010) 655–658 657
Table 1
Dry run of the basic algorithm.

Iteration 1
1 1

Iteration 1 2
2 1 1

Iteration 1 2 1
3 1 1 3

Iteration 1 3 1 2
4 1 1 3 1,3

Iteration 1 4 1 3 2
5 1 1 3 1,3 1,3

Iteration 2 4 1 3 2 2
6 1 1 3 1,3 1,3 3

Iteration 2 4 1 3 2 2 3
7 1 1 3 1,3 1,3 3 1,6

Iteration 2 4 1 3 2 2 3 4
8 1 1 3 1,3 1,3 3 1,6 7

Iteration 2 4 1 3 2 2 3 4 5
9 1 1 3 1,3 1,3 3 1,6 7 2,8

Iteration 2 5 1 3 2 2 3 4 5 5
10 1 1 3 1,3 1,3 3 1,6 7 2,8 8

Iteration 2 6 1 4 3 2 3 4 5 6 5
11 1 1 3 1,3 1,3 3 1,6 7 2,8 8 8

Iteration 2 6 1 5 4 2 3 4 5 6 6 5
12 1 1 3 1,3 1,3 3 1,6 7 2,8 8 8 8

Table 2
Dry run of the improved algorithm.

(a) The array of zi ’s

Iteration 1 7
Iteration 2 7 15
Iteration 3 2 15
Iteration 4 2 14 15
Iteration 5 2 14 14 15
Iteration 6 2 6 14 15
Iteration 7 2 6 8 15
Iteration 8 2 6 8 11
Iteration 9 2 6 8 11 17
Iteration 10 2 6 8 11 15
Iteration 11 2 6 8 11 14 15
Iteration 12 2 6 8 11 13 14

(b) The array of pi ’s

Iteration 1 1
Iteration 2 1 1
Iteration 3 1 1 3
Iteration 4 1 1 3 3
Iteration 5 1 1 3 3 3
Iteration 6 1 1 3 3 3 3
Iteration 7 1 1 3 3 3 3 6
Iteration 8 1 1 3 3 3 3 6 7
Iteration 9 1 1 3 3 3 3 6 7 8
Iteration 10 1 1 3 3 3 3 6 7 8 8
Iteration 11 1 1 3 3 3 3 6 7 8 8 8
Iteration 12 1 1 3 3 3 3 6 7 8 8 8 8
In the sequel, we call the second task of the i-th itera-
tion of the basic algorithm, which involves incrementing
the length of every subsequence whose largest element
x j satisfies xi � x j < xi + c, a length-shift. Apart from the
length-shift, the improved algorithm is quite similar to that
of constructing the longest increasing subsequence [17]. If
we use an array to store the sequence 〈z1, z2, . . .〉, mim-
icking the algorithm in [17], we will be able to use binary
search to locate the predecessor of xi and that of xi + c in
O (log k) time. But, a length-shift, which is now performed
by sequentially overwriting every z j in a specified range
using z j+1 ← z j , would require O (k) time. This results in
an implementation that runs in O (nk) time; still not the
claimed bound.



658 A. Elmasry / Information Processing Letters 110 (2010) 655–658
Example

Back to the example of Section 3, where c = 2 and the
input sequence is 〈7,15,2,14,14,6,8,11,17,15,14,13〉.
We show in Table 2 the two arrays: one holding the zi ’s
(part a), and another holding the indexes pi ’s (part b), af-
ter each of the 12 iterations performed by the algorithm.

The LaIS reported by this version of the algorithm will
be 〈2,6,8,11,14,13〉.

5. The data structure

In order to achieve the claimed O (n log k) bound, the
inner loop must be executed in O (log k) time. To effi-
ciently implement a length-shift, we store the z j ’s as an
ordered linked list, where a node holding z j points to a
node holding its successor element z j+1. During each it-
eration, a search is performed for the predecessor of xi .
A node that contains xi is then inserted after this position.

To perform a length-shift, the corresponding range of
nodes is determined and the successor of the last node in
the range is deleted (if such a node exists). To construct
the subsequence, we still maintain an array for the pi ’s.
This array is modified once per iteration and later used to
produce the output.

In summary, at each iteration the algorithm performs:
two predecessor searches, one successor finding, an inser-
tion and a possible deletion.

Algorithm 1 The pseudo-code for the LaIS algorithm.
1: for i = 1 to n do
2: v ← new_node()
3: v.value ← xi

4: v.index ← i
5: pred ← predecessor(xi)

6: if (pred �= null) then
7: pi ← pred.index
8: else
9: pi ← i

10: end if
11: insert(v)

12: s ← successor(predecessor(xi + c))
13: if (s �= null) then
14: delete(s)
15: end if
16: end for
17: m ← tail_node().index
18: for i = n down to m + 1 do
19: if (xm − c < xi � xm) then
20: print xi

21: end if
22: end for
23: print xm

24: t ← m
25: while (pt �= t) do
26: for i = t − 1 down to pt + 1 do
27: if (xpt − c < xi � xpt ) then
28: print xi

29: end if
30: end for
31: print xpt

32: t ← pt

33: end while

Each of these operations can be executed in O (log k)

time when building a balanced search structure over the
nodes of the linked list. We may use, for example, an
AVL tree [1] to achieve O (log k) cost per operation, or a
splay tree [18] for an amortized O (log k) cost per oper-
ation. For practical purposes, it would be better to keep
a linked list of pointers to find the successor of a given
node in constant time, accounting for at least three point-
ers per node in case using the aforementioned structures.
However, from the practical point of view, the best search
structure for this application is the jumplist [11]. Using a
jumplist: a predecessor search, an insertion and a deletion
require O (log k) amortized time (O (log k) expected time
[7]), finding the successor requires constant time, and we
only use and maintain two pointers per node.

Acknowledgements

I would like to thank Rajiv Raman and Saurabh Ray for
introducing the problem and for several useful discussions.

References

[1] G. Adelson-Velskii, E. Landis, On an information organization algo-
rithm, Doklady Akademii Nauk SSSR 146 (1962) 263–266.

[2] M. Albert, R. Aldred, M. Atkinson, H. Ditmarsch, B. Handley, C. Han-
dley, J. Opatrny, Longest subsequences in permutations, Australian
Journal of Combinatorics 28 (2003) 225–238.

[3] M. Albert, M. Atkinson, D. Nussbaum, J. Sack, N. Santoro, On the
longest increasing subsequence of a circular list, Information Process-
ing Letters 101 (2007) 55–59.

[4] M. Albert, A. Golnski, A. Hamel, A. Lopez-Ortiz, S. Rao, M. Sa-
fari, Longest increasing subsequences in sliding windows, Theoretical
Computer Science 321 (2004) 405–414.

[5] A. Apostolico, M. Atallah, S. Hambrusch, New clique and independent
set algorithms for circle graphs, Discrete Applied Mathematics 36
(1992) 1–24.

[6] J. Baik, P. Deift, K. Johannsson, On the distribution of the length of
the longest increasing subsequence of random permutations, Journal
of the American Mathematical Society 12 (1999) 1119–1178.

[7] H. Brönnimann, F. Cazals, M. Durand, Randomized jumplists: A jump-
and-walk dictionary data structure, in: 20th Symposium on Theoret-
ical Aspects of Computer Science, in: LNCS, vol. 2607, 2003, pp. 283–
294.

[8] M. Chang, F. Wang, Efficient algorithms for the maximum weight
clique and maximum weight independent set problems on permu-
tation graphs, Information Processing Letters 76 (2000) 7–11.

[9] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms,
2nd ed., The MIT Press, Cambridge, 2001.

[10] A. Delcher, S. Kasif, R. Fleischmann, J. Paterson, O. White, S. Salzberg,
Alignment of whole genomes, Nucleic Acids Research 27 (1999)
2369–2376.

[11] A. Elmasry, Deterministic jumplists, Nordic Journal of Comput-
ing 12 (1) (2005) 27–39.

[12] M. Fredman, On computing the length of longest increasing subse-
quence, Discrete Mathematics 11 (1975) 29–35.

[13] J. Hunt, T. Szymanski, A fast algorithm for computing longest com-
mon subsequences, Communications of the ACM 20 (1977) 350–353.

[14] D. Knuth, Permutations, matrices, and generalized Young tableaux,
Pacific Journal of Mathematics 34 (1970) 709–727.

[15] P. Ramanan, Tight Ω(n log n) lower bound for finding a longest in-
creasing subsequence, International Journal of Computer Mathemat-
ics 65 (3–4) (1997) 161–164.

[16] G. Robinson, On representations of the symmetric group, American
Journal of Mathematics 60 (1938) 745–760.

[17] C. Schensted, Longest increasing and decreasing subsequences, Cana-
dian Journal of Mathematics 13 (1961) 179–191.

[18] D. Sleator, R. Tarjan, Self-adjusting binary search trees, Journal of the
ACM 32 (3) (1985) 652–686.


